Extracellular vesicles – a key to the success of early stages of pregnancy

Correct communication between the embryo and the mother determines the success of the pregnancy. Scientists from the Molecular Biology Laboratory of IARFR PAS have shown that extracellular vesicles play an essential role in this process.

– Our research shows that the exchange of a unique population of extracellular vesicles and their molecular cargo between the embryo and the mother is the key to the successful implantation of the embryo and the further course of pregnancy. We have shown that the early stages of embryo implantation are regulated by the exchange of extracellular vesicles between the embryo and the endometrium (the mucous membrane lining the uterine cavity) – emphasizes Prof. Monika Kaczmarek, who heads the Molecular Biology Laboratory at the Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences in Olsztyn.

What are these extracellular vesicles (EVs)? These are membrane-covered nanostructures secreted by all types of cells in living organisms. – Recently, they have gained recognition as an important element of intercellular communication. Moreover, over the last decade, their role has become particularly important in the area of mammalian reproductive biology, attracting the attention of many scientific teams and researchers around the world – describes the researcher.

Scientists from her team have shown that during early pregnancy, the uterine lumen is rich in extracellular vesicles that carry microRNA molecules capable of regulating the expression of genes involved in the development of the embryo and the body (gene expression is a process during which specific genetic information is decoded and transferred to „production proteins”).

– Once delivered to primary trophoblast cells, the vesicles regulate genes responsible for development as well as signaling and interactions between cells, consequently influencing the proliferation (ability of cells to multiply), migration and invasive abilities of trophoblast cells. Therefore, their role in the success of pregnancy in its early stages is crucial – explains Prof. Monika Kaczmarek.

An article on this topic by a team of scientists led by prof. Monika Kaczmarek, which was published in the prestigious experimental biology journal „The FASEB Journal”, was among the most frequently read articles in the first 12 months after publication.

We wrote more about this research here.

Link to publication.

Read more

Assistant professor in the Physiology and Toxicology Team

Position: Assistant professor in the Physiology and Toxicology Team

Hours of employment: full time

Expectations:

  • focusing on the implementation of research interests,
  • applying for scientific and research projects and preparing publications for printing in scientific journals from the Philadelphia list,
  • developing methodological skills in 3D cultures, molecular biology and transcriptomics analyses ,
  • motivation for scientific work,
  • communication skills and good work organization,
  • ability to work individually and in a team.

Candidate qualification requirements:

  • PhD degree in agricultural, biological, veterinary or related sciences,
  • Knowledge of animal physiology and cell biology, reproductive biology, molecular biology,
  • First author of at least 3 scientific publications from the Philadelphia list
  • Experience in presenting results at scientific conferences
  • Foreign internship, e.g. post doc – minimum 1 year,
  • Participation in research projects financed from external funds,
  • Experience in: conducting cell cultures of primary cells and cell lines; molecular biology techniques; microscopic techniques, including cell survival analyses; ELISA and statistical analyses. Knowledge of transcriptomic and proteomic analyzes will be an additional advantage.
  • Fluent knowledge of English in speech and writing,
  • practical ability to drive a passenger car (category B driving license)
  • courses, training and practical skills related to working with animals and in the laboratory will be an additional advantage,
  • references regarding experience in scientific and research work will be an additional advantage.

Working conditions:

Place of work: Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, Physiology and Toxicology Group

There is a possibility of additional employment in external projects.

Outlook:

  • working in a well-coordinated team, in a supportive atmosphere,
  • work focused on achieving ambitious results,
  • scientific work without the need to conduct classes with students,
  • technical, administrative and organizational support,
  • opportunity to engage in science popularization activities,
  • motivation in the form of participation in scientific conferences , courses and scientific training

Required documents:

  • copy of the doctoral degree diploma,
  • letter of motivation,
  • scientific CV with a list of publications, conferences and other achievements,
  • a reference letter certifying your skills,

Other documents that, according to the Candidate, are important when considering his/her candidacy.

Entries for the competition should be sent to the following e-mail address: j.papurzynska@pan.olsztyn.pl or to the following address:

Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences,
Human Resources Department
street Tuwima 10,
10-748 Olsztyn

The deadline for submitting documents is May 12. 2024 at 12.00.

In your CV, please include a clause of consent to our processing of personal data in the recruitment process:

„I consent to the processing of my personal data contained in the application documents by the Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences in Olsztyn with its registered office at 10-748 Olsztyn ul. Tuwima 10, in order to carry out the recruitment process and publish the full competition results on the Institute’s website.

Information clause:

  1. The administrator of personal data processed as part of the recruitment process is the Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences in Olsztyn with its registered office at 10-748 Olsztyn ul. Tuwima 10, tel. 89 523 46 86, e-mail: institute@pan.olsztyn.pl .
  2. Contact with the personal data protection officer is possible at the above-mentioned address.
  3. The provided personal data will be processed for the purpose of implementing the current recruitment process and stored until its completion based on the consent given (in accordance with Article 6(1)(a) of the GDPR).
  4. The data subject has the right to withdraw consent at any time without affecting the lawfulness of processing based on consent before its withdrawal.
  5. The data subject has the right to access his or her personal data, request its rectification or deletion. Submitting a request to delete data is tantamount to resigning from participation in the recruitment process. In addition, she has the right to request restriction of processing in the cases specified in Art. 18 GDPR.
  6. The data subject has the right to lodge a complaint with the President of the Personal Data Protection Office regarding unlawful processing of his or her personal data. This body will be competent to consider the complaint, however, the right to lodge a complaint only concerns the lawfulness of the processing of personal data and does not concern the recruitment process.
  7. The data provided will not be subject to profiling or made available to entities or third countries. The recipients of the data may be institutions authorized by law.
  8. Providing the data contained in the recruitment documents is not obligatory, but it is a necessary condition for participating in the recruitment process.

Read more

Partially defatted poppy seeds better than native ones

Partially defatted poppy seeds, a by-product of poppyseed oil cold pressing, are a source of health-promoting dietary components, indicates a scientist from the Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences in Olsztyn. Consuming them in the form of a dietary supplement (approximately 5.5 tablespoons per day) can beneficially alter lipid metabolism and support the treatment of obesity and its complications.

– In our research, we wanted to check to what extent this by-product of poppyseed oil pressing can still be useful for consumption and act as a valuable dietary component in the context of diet-related diseases. Such a form of poppy seeds is less calorific and may even be richer in some health-promoting compounds than native seeds – says dr. Adam Jurgoński, professor of IAR&FR PAS in Olsztyn.

A paper addressing this topic has been published in the prestigious journal Scientific Reports.

LIKE TWO PEAS IN A POD

Poppy seeds are a popular ingredient in Polish cuisine, especially added to bread, cakes and festive dishes. They are rich in nutrients – almost half of them consist of fatty acids present in the oil fraction (including polyunsaturated fatty acids, which are important components of our diet). They also contain dietary fibre, protein and various antioxidant compounds. 

Poppyseed oil is usually cold-pressed. This process involves mechanically separating the oil from the seeds at a low temperature, allowing for additional protection of the nutritionally valuable components. Poppyseed oil is high in linoleic acid (omega-6 acid), which is essential for the proper functioning of our body, although its intake is usually excessive in relation to other essential fatty acids present in our diet (i.e. omega-3 acids).

A by-product of the cold-pressed oil is partially defatted poppy seeds, also known as oilcakes. – It turns out that reducing this dominant oil fraction increases the proportion of dietary fibre, protein and some biologically active compounds. Thus, these seeds remain a product that is still valuable from a nutritional point of view – points out Adam Jurgoński.

POPPY VERSUS BODY LIPIDS

Researchers investigated the effect of dietary supplementation with partially defatted poppy seeds on the development of obesity.

The study was conducted on a laboratory animal model characterised by increased body weight. Overweight and obesity cause disturbances in the metabolism of lipids and glucose, and this in turn can lead to diet-related diseases such as certain cardiovascular diseases, steatohepatitis or type 2 diabetes.

– We have shown that relatively small dietary supplementation with defatted poppy seeds (for humans, this is about 5.5 tablespoons of these seeds per day) improves lipid metabolism in the body by reducing triglycerides in the blood and liver, and preventing increased visceral fat accumulation. We have also tentatively identified the molecular mechanism underlying these beneficial changes – reports Adam Jurgoński.

Elevated triglyceride levels and excess visceral fat are associated with an increased risk of the previously mentioned diet-related diseases.

According to the researcher, the new knowledge may be useful to nutritionists as well as food and supplement manufacturers, as it points to new possibilities for the use of the by-product in question, e.g. in the form of a pro-health 'filling’ to poppy seed cake (the seeds are already ground and do not require additional milling, like the regular ones).

– Therefore, poppy seeds in their partially defatted form can be an interesting ingredient in our diet, which turns out to be beneficial for the functioning of the body affected by metabolic disorders related to obesity – concludes Adam Jurgoński.

Read more

Post-doc in Department of Team of Reproductive Pathology and Translational Medicine

Director of the Institute of Animal Reproduction and Food Research of Polish Academy of Science in Olsztyn announces an open call for the position:

Post-doc in Department of Team of Reproductive Pathology and Translational Medicine

within the realization of the project financed by the National Science Centre, Reg. No: 2018/29/B/NZ9/00391, entitled: “Biological study and mathematical modeling to describe and predict new processes controlling the development, function and atresia of ovarian follicles in cows” led by prof. Dariusz Jan Skarżyński.

Scientific research and other tasks in which the Candidate would participate:

  • research related to: (1) investigation of the effects and mechanisms of growth factors on follicular growth, steroidogenesis, maturation and ovulation in cattle; and (2) developing mathematical models that will describe mechanisms controlling above functions of bovine follicles,
  • execution of experiments,
  • participation in in vitro experiments (cell separation and culture),
  • participation in molecular biology analysis,
  • perform data analysis and presentation, create high quality figures,
  • collaborate with mathematicians, biologists and veterinarians,
  • draft manuscripts for publication, present/publish the results in scientific conferences.

Candidate qualification requirements:

  • Ph.D. in biology or biotechnology, animal sciences, mathematical biology or bio-informatics,
  • Experience in one or more of the following areas: reproductive biology, cell physiology, hormonal regulation, mechanisms of cytokine and growth factor action,
  • First authorship of at least 5 scientific publications,
  • At least one international internship (minimum 1 month),
  • Participation in externally funded research projects (executor of at least 2 projects),
  • Laboratory experience: in cell culture, ELISA, molecular biology techniques,
  • Fluency in English in speaking and writing,
  • Good writing and presentation skills of scientific papers and work, oral and written communication skills: English essential, Polish desirable.

Expectations:

  • communicativeness and good organization of work,
  • ability to work in a team, create research teams,
  • experience in interpretation of RNA-seq data.

The Institute offers:

  • assistance in accommodation during the initial period near the Department location,
  • academic work without the need to conduct classes with students,
  • technical, administrative and organizational support,
  • participation in research conferences, courses, scientific trainings and conscious academic mentoring.

Application documents required from candidates:

  • Curriculum Vitae including:  education history, details on the PhD thesis (title, name of the supervisor, institution awarding the title, date of issuing the diploma), scientific record (scientific papers, conference presentations, book chapters, monographs, books, etc.), awards and other achievements (scholarships, internships, training schools, participation in research projects, etc.);
  • copy of PhD diploma;
  • at least one recommendation letter signed by a recognized researcher.

Employment duration – 7 months: since May 1, 2024 until November 30, 2024

Application documents should be sent to e-mail address: k.lukasik@pan.olsztyn.pl.

Mrs. Karolina Łukasik
Department of Team of Reproductive Pathology and Translational Medicine,
Institute of Animal Reproduction and Food Research of PAS
Olsztyn, Poland

Kindly note that only online applications will be accepted.

The deadline for sending the documents is April 8, 2024; 12.00. a.m.

Results of the call will be announced within 7 days since the application deadline (may be extended until suitable Candidate who fulfills all requirements is found).

Please include in your application the following, signed statement:

“I agree to the processing of personal data provided in this document for realizing the recruitment process pursuant to the Personal Data Protection Act of 10 May 2018 (Journal of Laws 2018, item 1000) and in agreement with Regulation (EU) 2016/679 of the European Parliament and of the Council of 27 April 2016 on the protection of natural persons with regard to the processing of personal data and on the free movement of such data, and repealing Directive 95/46/EC (General Data Protection Regulation)”.

Information clause:

According to Art. 12 Para. 1 and 2 of the Regulation (EU) 2016/679 of the European Parliament and of the Council of 27 April 2016 on the protection of natural persons with regard to the processing of personal data and on the free movement of such data, and repealing Directive 95/46/EC (General Data Protection Regulation- hereinafter referred to as GDPR), we would like to inform you that:

  1. The administrator of your personal data is the Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences in Olsztyn, 10 Tuwima Str., 10-748 Olsztyn, NIP 739-05-04-515, REGON 001289340, phone: +48 89 523 46 86, e-mail: instytut@pan.olsztyn.pl.
  2. You can contact our Data Protection Officer by e-mail: iodo@pan.olsztyn.pl.
  3. Your personal data will be processed on the basis of art. 6 par. 1 lit. a general regulation on data protection and the Labor Code – Act of June 26, 1974 (Journal of Laws of 2018, item 108) for recruitment to work at the Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences in Olsztyn .
  4. Personal data will be kept during the recruitment period.
  5. You have the right to request the administrator to access your personal data, the right to rectify it, delete or limit the processing and the right to withdraw consent to its processing.
  6. You have the right to lodge a complaint with the supervisory body, the President of the Office for Personal Data Protection.
  7. Providing personal data is a statutory requirement and is mandatory due to the provisions of labor law, and is voluntary in the remaining scope.
  8. Your data will not be processed in an automated way.
  9. The provision of your personal data is voluntary, but the refusal to provide such data may result in the inability to attend the recruitment process.

The results of the competition will be available on the website.

The recruitment rules for research positions are available here.

Read more

World Water Day: Scientific strategies to protect and restore coral reefs

Cross-breeding, cryopreservation (freezing) of semen and creating a bank of reproductive cells and coral larvae are all examples of scientific strategies to enhance the resilience of coral reefs and protect these invaluable ecosystems from the negative effects of climate change.

– Due to climate change and other anthropological factors, we have already lost more than half of all coral reefs. Although corals have remarkable mechanisms of resilience, the rate of climate change (increasing water temperature and decreasing pH level) exceeds their natural ability to adapt – emphasises dr. Radosław Kowalski from the Department of Gamete and Embryo Biology of the Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences in Olsztyn.

The scientist investigates reefs near the Japanese island of Okinawa. He has been studying coral reproduction for more than a decade. – Back then, the topic of coral reef conservation was niche. Today, after a growing number of publications and projects, it is becoming clear that the problem is severe, and the need to find a strategy to protect these invaluable ecosystems supporting the diversity of marine life is indeed urgent – he adds.

The researcher points out that besides an increase in water temperature, a significant negative impact on coral reefs is also caused by a decrease in the ocean’s pH, i.e. its acidification. This is linked to an increase in carbon dioxide emissions into the atmosphere, which then dissolves in the oceans. – This is why, in recent decades, the natural pH level of the oceans has dropped from 8.2 to 8.1. However, this inconspicuous one-tenth means a one-third increase in ocean acidification! Corals build their skeletons from calcium carbonate, which is 'taken up’ from the water, but this mechanism stops at a pH of 7.9. In addition, water acidification reduces the reproductive capacity of corals – says Radosław Kowalski.

And although corals look more like plants, they are animals (invertebrates). They are found in equatorial regions.

INTERSPECIES BREEDING

Modern coral reefs, including the Great Barrier Reef in Australia, formed about 8-10,000 years ago. As the reefs are mainly found around the equator, where the annual temperature changes were not very pronounced, their biological cycle synchronised with the phases of the moon – depending on the species, they approach spawning on a specific full or new moon counting from the beginning of the year.

– This synchronisation allows these non-migratory animals to ensure contact with gametes (reproductive cells) of the same species by releasing them en masse into the ocean, usually during a single night. However, climate warming has resulted in temperatures during the coral spawning season that their physiology has not previously encountered. And while thermals did not previously play a major regulatory role in coral reproduction, we are now seeing a significant modulating effect. For this reason, unsynchronised coral spawning is now occurring annually on the reef – the researcher points out.

This is resulting in a noticeable increase in interspecies hybrids. An example is the crossing of species from deeper parts of the ocean, where there is cooler water, with those from shallower parts with warmer water. The result is a hybrid with mediated characteristics that is able to inhabit larger spaces. – This fascinating mechanism shows how corals try to adapt to change –  explains Radosław Kowalski.

Interspecies breeding also has considerable potential as a tool for scientifically assisted evolution, as combining the gametes of different coral species offers the possibility of obtaining a hybrid, e.g. with increased thermal tolerance (to changes in water temperature) or with specific desirable adaptive traits to changing environmental conditions.

Dr. Radoslaw Kowalski is conducting such research with a team of Japanese scientists from the University of the Ryukyus in Okinawa.

Recently, the researcher has been focusing on the cross-breeding possibilities of aquarium-reared species.
– From my observations, I have noticed that corals bred in aquaria are subject to enormous environmental pressure, so that there is a lot of natural selection, and only the strongest individuals survive. We want to cross naturally occurring species with those bred in aquaria and see if their hybrid will be more adaptable – he says.

GENETIC INSURANCE POLICY

Another strategy to protect coral reefs is the cryopreservation of coral sperm, i.e. their storage at ultra-low temperatures. This method enables the preservation of genetic material, acting as a genetic insurance policy that can be used in the future to restore and rebuild coral reefs.

– Creating a bank of gametes and coral larvae is one of the biggest challenges for scientists working on this topic. We are already able to cryopreserve sperm, but after thawing, the eggs are still needed for fertilisation. With larvae, there would not be such a problem, but here we still need to improve the method of freezing them – Radosław Kowalski points out.

The semen cryopreservation method can also be helpful in the process of crossbreeding between species, for example, by allowing semen taken from resistant individuals to be transported from aquaria to coral reefs, where it can be used to create more resistant individuals of a particular species.

ACTION NEEDED

– The state of coral reefs around the world is critical; these ecosystems are on the brink of collapse. Research into strategies to protect reefs is therefore needed as never before. However, I always stress that even the most cutting-edge scientific solutions are no substitute for our everyday actions, such as saving energy or water, which can make a real difference in protecting our planet – Radosław Kowalski concludes.

Read more

Gender differences in skin scarring

The composition and structure of scars vary depending on gender, scientists from the Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences in Olsztyn have shown. Tissues in men are characterised by a higher content of type 1 collagen and elastin. Women, on the other hand, showed a higher accumulation of type 3 collagen, characteristic of scarless wound healing.

– Our work is the first publication to demonstrate differences between men and women over 50 in the structure of cutaneous scars. The obtained results may contribute to the development of research on new pharmaceuticals taking into account gender differences in patients – emphasises Professor Barbara Gawrońska-Kozak, leader of the Regenerative Biology Team at the Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences in Olsztyn.

Her team’s research focuses on understanding the molecular basis of the repair mechanisms controlling the healing process of skin wounds with scar formation (reparative healing), but also in terms of regenerative (scarless), healing.

SCARS ARE NECESSARY

Scars are 'mementos’ left on the skin after various types of injury, such as cuts (e.g. post-operative wounds), lacerations, or burns. The rate of wound healing can be affected by many factors including age, gender, body area, and wound size.

– Scar healing is beneficial for the organism, as it restores, relatively quickly, the protective function of the skin, preventing the penetration of pathogenic microorganisms into the injured area. Unfortunately, disorders in the healing process may result in numerous complications, such as non-healing wounds or hypertrophic scars, explains Prof. Barbara Gawrońska-Kozak.

In the animal world, there is also scarless wound healing, called regenerative or ideal wound healing. – This is the process of regaining the appearance and functionality of uninjured skin. This type of wound healing rarely occurs in mammals. One example of regeneration observed in humans is the healing of skin wounds during the first two trimesters of fetal life. When an injury occurs during this time (e.g. during surgery in the womb), the skin heals scarlessly, with no trace of the injury. Interestingly, research by scientists from the UK has shown that in elderly people, healing of skin injuries lasts longer, but with the formation of a smaller, more delicate scar, with a macroscopic and microscopic appearance resembling uninjured skin – says Dr. Marta Kopcewicz of the Regenerative Biology Team at the IAR&FR PAS.

COLLAGEN TYPE MAKES A DIFFERENCE

To better understand the molecular basis of scar formation and to see what is the role of gender in this process, researchers from Prof. Barbara Gawrońska-Kozak’s team decided to analyse samples of uninjured and scarred skin, collected from men and women over 50. The tissues were taken from the patient’s abdominal areas (with their written consent and under the supervision of the local ethics committee). Doctors from the Voivodal Specialistic Hospital in Olsztyn were involved in the research.

– It has long been known that intact skin varies by gender: in men, among other things, it is thicker, with higher amounts of type 1 collagen, and with more sebaceous glands secreting  sebum. Our research indicates that there are also gender-dependent differences in scars – points out Prof. Barbara Gawrońska-Kozak.

Thus: men have more type 1 collagen and elastin in abdominal skin scars than women, which is in line with what is known about differences in uninjured skin. Women, on the other hand, showed higher expression levels of genes specific to the adipose tissue present in the skin.

Interestingly, we observed a higher accumulation of type 3 collagen in women’s scars – a type of collagen that is associated with regenerative wound healing. – These are only the first indications which require further research, but we have presented for the first time that women may have a greater potential for regenerative healing than men – says Dr. Marta Kopcewicz.

The researchers also histologically assessed the structure of scars. Their analyses showed that the arrangement of collagen fibres and their thickness also depended on gender: they are finer in women.

CHANCE FOR NEW MEDICINES

Earlier studies by Dr. Marta Kopcewicz, conducted on animals, showed that age and gender have the greatest impact on the wound healing process. – Our latest research, already conducted on human tissues, has confirmed this – emphasizes the researcher.

According to Prof. Barbara Gawrońska-Kozak, the results may contribute to further research into potential pharmacological products that take gender differences into account. – In addition, our study contributes to important knowledge about scarring in people over 50, when the skin is different from that of young people, who are usually the research group in studies in this area – concludes the scientist.

An article presenting the results of the described study was published in the journal Biomedicines and is available here.

Read more

Vitamin D and the aging – a new concept explaining this relationship

Linking the body’s individual response to vitamin D with immunocompetence, or generally speaking: potent immunity, may be the key to explaining the mechanism of how vitamin D protects against the most common diseases and at the same time promotes healthy aging.

– The results of our research suggest that immunocompetence describes not only an individual’s ability to resist pathogens and parasites, but also to fight non-communicable diseases and the aging process itself – emphasizes Prof. Carsten Carlberg from the Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences in Olsztyn, a world-famous biochemist specializing in research on vitamin D.

The publication with the research results was published in the journal „Nutrients” . The co-author of the article is Dr. Eunike Velleuer from the University of Düsseldorf (Germany).

AN IMPORTANT REGULATOR

Vitamin D affects the functioning of the entire body via its modulatory actions on the immune system. In contrast, vitamin D deficiency causes malfunctions of the immune system, leading to, among others increased susceptibility to infectious diseases or autoimmune diseases.

Based on the results of his previous research, prof. Carlberg proposed dividing the population into three groups according to the level of the body’s response to vitamin D: high, mid and low responders. A high level of responsiveness means that the body is able to make a maximum use of the effects of vitamin D (it has a high molecular response to vitamin D), and that in such group of people the need for supplementation is lower than in people from the low responder group.

This division is a starting point for understanding the scientist’s subsequent research. This time he looked at the relationship between the above-mentioned grouping and the processes occurring at the molecular level in cells sensitive to changes in vitamin D – in the context of the aging process.

VITAMIN D IN THE AGING PROCESS

Aging is a natural and inevitable process of accumulation of molecular and cellular damage, which leads to defective functions of cells, tissues and organs that weaken the entire human body. Some profound changes in the immune system at the molecular level contribute to a decline in immunocompetence, i.e. the ability of the human body to respond appropriately to an exposure to an antigen.

As overall immunocompetence declines during aging, the relative number of immune cells decreases.

– However, there are differences between people in this population group, i.e. some people have a higher percentage of immune cells than average, and some have a lower percentage. Therefore, in the same age group there are people with higher immunological resistance and others with lower ones. Therefore, it can be assumed that in the first group the rate of aging is slower and the incidence of diseases is lower, while in the second group accelerated aging and a higher rate of disease should be observed – explains Prof. Carlberg.

On this basis, it can be assumed that the relationship between the level of the body’s individual response to vitamin D and its immunocompetence plays a significant role in the aging process.

Prof. Carlberg and his team use this relationship to develop a mechanism explaining how vitamin D affects the epigenetic programming of immune cells, in particular monocytes and their derived cells. Details can be found in the source publication.

– Our study results suggest that vitamin D is an important element of healthy aging, not only for maintaining bones and skeletal muscles in good condition, but also for the homeostasis of the immune system. We also believe that a sufficient amount of vitamin D, adapted to the individual needs of the body, should stabilize immune resistance, protect against many diseases and maintain a low rate of aging – concludes the scientist.

Prof. Carlberg is the leader of the scientific group dealing with nutrigenomics at the Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences in Olsztyn.

More information about the Nutrigenomics Laboratory of IARFR PAS in Olsztyn and the latest research of the ERA Chair WELCOME2 team can be found here.

Read more

Non-genetic inheritance in rainbow trout – research by a PASIFIC grantee

Inside the eggs there is encoded information that the mother wants to pass on to her offspring, which may relate, for example, to her past illnesses. This mechanism – called non-genetic inheritance – is known to scientists, but not yet fully understood. Dr. Taina Rocha de Almeida from the Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences in Olsztyn explores it.

Dr. Taina Rocha de Almeida is a grantee of the PASIFIC – Marie Skłodowska-Curie COFUND programme. This is a scholarship competition managed by the Polish Academy of Sciences and co-funded by the H2020 Programme „Marie Skłodowska-Curie Actions Co-funding of regional, national and international programmes” and the Polish Ministry of Education and Science.

Her research work focuses on determining to what extent non-genetic inheritance factors affect the adaptability of offspring (from embryo to juvenile stages) to breeding conditions. The researcher’s scientific supervisor is dr. Daniel Żarski from the Department of Gamete and Embryo Biology, IAR&FR PAS.

– This knowledge can be useful for improving fish farming, but also for gaining a deeper understanding of fish immunity, emphasises dr. Taina Rocha de Almeida.

The aim of her ongoing research is to investigate how the eggs transcriptome is linked to progeny performance – by examining embryos and juveniles of two varieties of rainbow trout bred in Poland.

Rainbow trout is one of the most popular farmed species in the world; the second most produced in Europe. As dr. Taina Rocha de Almeida points out, despite advances in knowledge, production is still not as efficient as it could be. – There are many issues hindering the growth of rainbow trout production, but in this research I have focused specifically on two: the productivity of the offspring and resistance to enteric redmouth disease (ERM) or yersiniosis, caused by the bacterium Yersinia ruckeri, which is one of the most serious diseases of salmonids, mainly affecting rainbow trout – she explains.

The transcriptome is a set of RNA molecules in cells that changes according to different factors, e.g. disease. To study the eggs transcriptome (i.e. the information encoded there – in this case for the mRNA-based disease yersiniosis) and its link to offspring performance, the scientist carried out the whole process – from incubation, through the hatching period and the growth of the fish. The fish were then divided into two groups – one was the control group and the other was infected with the aforementioned Yersinia ruckeri bacterium.

The disease causes changes in organs such as the liver, spleen and gills, among others. The scientists therefore took samples of these organs from the infected fish to study the expression of the genes responsible for the immune response there.

In a molecular study of the eggs, the scientist selected 10 genes that play a key role in the immune response of the immune system. She will now compare these with genes from the collected tissues. Dr. Taina Rocha de Almeida also plans to analyse microRNA molecules, the proteome (i.e. the set of proteins present in the cell at any given time) and to study a third variety of rainbow trout, which has also already undergone the entire research process.

The results will show to what extent the information in the eggs influences the performance of the offspring, should they contract a disease popular among rainbow trout. The new knowledge will not only contribute to the advancement of science on the topic of rainbow trout reproduction, but may also find real applications in breeding in the future.

The research was conducted in cooperation with the Dąbie Fish Hatchery and the Faculty of Veterinary Medicine of the University of Warmia and Mazury in Olsztyn.

The results of the grantee’s research to date were presented at the Leadership Seminar held on 2 February this year.

More about her research can be found here. More about the PASIFIC programme can be found on the PAS website.

Read more

Biological clock genes, insulin and obesity – what do they have in common?

The biological clock helps regulate the timing of various processes in the body. Diurnal variation is shown, among others, by genes regulating insulin sensitivity. Researchers at the Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences in Olsztyn have shown that the expression of biological clock genes in subcutaneous adipose tissue is linked to insulin action, and is lower in obese people than in those of normal body weight.

Two genes in particular are involved in insulin action: NR1D2 and DBP. – The higher the expression of these genes in adipose tissue, the higher the body’s sensitivity to insulin. And the higher the body’s sensitivity to insulin, the better the regulation of blood glucose levels – explains Professor Marek Strączkowski, head of the Department of Prophylaxis of Metabolic Diseases at the Institute of Animal Reproduction and Food Research (IAR&FR) of the Polish Academy of Sciences in Olsztyn.

The findings of the team led by him were published in the journal Nutrition.

INSULIN AND CIRCADIAN RHYTHM

Insulin is a hormone that increases the transport of glucose into cells, which in turn lowers blood glucose levels. Insulin resistance is a reduced sensitivity of tissues to the action of insulin.

– Insulin resistance in itself is not a disease, but it is a condition that can lead to the development of many diseases: first and foremost type 2 diabetes, but also cardiovascular disease, certain cancers or neurodegenerative diseases – recalls the scientist who is researching the pathogenesis of insulin resistance in people at risk of type 2 diabetes.

The biological clock, on the other hand, is a circadian complex of biochemical processes occurring in the body. The circadian rhythm is controlled centrally and by peripheral clocks in tissues such as subcutaneous adipose tissue. It is an oscillator that stimulates the expression of successive genes encoding proteins responsible for specific biological processes, depending on the time of day or night. Also among the genes regulating insulin sensitivity are those showing diurnal variation, so that the insulin sensitivity of adipose tissue is highest around midday and lowest around midnight.

IMPROVED RESULTS FOLLOWING WEIGHT REDUCTION

Researchers from the IAR&FR PAS decided to combine these issues. To do so, they analysed the expression of subcutaneous adipose tissue clock genes in relation to obesity and insulin sensitivity.

The study group consisted of 38 overweight or obese people. They were examined before and after a 12-week programme of weight reduction through diet. The control group consisted of 16 normal-weight subjects examined only at baseline. Tissue insulin sensitivity was tested using the so-called metabolic clamp method, which is nowadays considered the best method for assessing insulin action in the body.

– Initially, obese subjects had lower expression of biological clock genes in subcutaneous adipose tissue than controls. After weight reduction in the subjects, this expression increased – the researcher reports.

Two genes related to insulin sensitivity in particular are involved: NR1D2 and DBP.

– We have shown that the aforementioned subcutaneous adipose tissue clock genes can be a starting point for further studies to better understand the pathogenesis of insulin resistance. We will explore the problem in further studies, already in cell cultures. This is a developmental topic – concludes Professor Marek Strączkowski.

On the topic of insulin resistance, a previous publication by researchers from the Department of Prophylaxis of Metabolic Diseases at the Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, we wrote here.

Read more

2024 CALL FOR PHD STUDENTS IN „RESEARCH ON EPIGENETIC MEMORY MECHANISMS BASED ON THE EXAMPLE OF THE RESPONSE OF HUMAN IMMUNE CELLS TO VITAMIN D”

Name of the scientific unit:

Institute of Animal Reproduction and Food Research of Polish Academy of Sciences in Olsztyn (IAR&FR PAS), Poland

Position:

Ph.D. Student

Position description:

The scholarship holder selected under this competition will participate in research tasks carried out as part of the OPUS NCN project entitled „Research on epigenetic memory mechanisms based on the example of the response of human immune cells to vitamin D” led by prof. Carsten Carlberg. The most relevant duties could be described as:

  • Isolation of human immune cells from blood donors for direct use and cell culture
  • Library preparation of RNA and chromatin samples using methods like RNA-seq, ATAC-seq and ChIPmentation,
  • Analysis and integration of next-generation sequencing data obtained from these assay,

Requirements:

  • Master Degree (MSc) in Biosciences (Biology/ Biochemistry/ Biotechnology);
  • Experience in molecular biology;
  • Experience with analysis of high-throughput ‘omics data;
  • Scientific achievements, including publications in renowned scientific journals;
  • Achievements resulting from:
    • conducting scientific research,
    • scholarships,
    • awards,workshops and scientific training,
    • participation in research projects.
  • Precise pipetting;
  • Proficiency in carrying out methods like:
    • PCR,
    • RNA isolation,
    • cell culture.

Additional skills:

  • High motivation to work in a multidisciplinary team;
  • Excellent communication skills for effective interaction with the multidisciplinary cohort of researchers;
  • Proactive, motivated, showing initiative;
  • Good work organization;
  • Fluency in English in writing and speaking;
  • Good writing and presentation skills;

Recruitment process:

  • Applications will be assessed in accordance with the criteria set out in the regulations for awarding research scholarships in research projects financed by the National Science;
  • Only on-line applications will be considered;
  • Selected candidates will be invited to an on-line interview;
  • Candidates evaluated with the highest score will be invited to an actual interview, which will take place face-to-face or online
  • During the interview, the candidate will be asked to deliver a 10-minute speech. presenting his/her Master thesis and research interests
  • Final results of the recruitment will be published on IAR&FR PAS webpage within 10 days after final decision.
  • Candidates selected in the course of recruitment will be asked to apply to the Interdisciplinary Doctoral School at the Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences in Olsztyn – admission to the doctoral school is a prerequisite for receiving a scholarship.
  • Admissions to the doctoral school will be announced on the doctoral school website.
  • Note: Candidates are entitled to a right of complaint within 14 days from the final results announcement. Complaints (with justification) should be addressed to the Institute’s HR Manager. HR Manager is obliged to respond the complaint within 14 working days. 

Important information:

  • Application deadline: 11 Feb 2024, 23:59 (Eastern European Time);
  • Applications should be sent to: c.carlberg@pan.olsztyn.pl;
  • Location: Olsztyn, Poland;
  • Duration of the scholarship: 48 months;
  • Scholarship amount: 5,000 PLN per month;
  • Date of position opening: 26 Feb 2024;
  • Number of positions: 2.

Application documents:

  • Cover letter describing how they fit the position and their scientific interests and philosophy;
  • CV – degrees and other completed courses, work experience and a list of degree projects/theses;
  • Degree certificates and grades confirming that you meet the general and specific entry requirements;
  • Contact information of 3 referees.
  • Please read the list of required documents;
  • Please include application form;
  • Please include consent to the processing of personal data;

Read more