

Enzymes – use in Food production

EIT Food course

On-line, 17th of November 2022

Margaret Geirsdottir, Matís

Matís activities

Research and innovation projects

Analytical services

Public safety and priority services

National reference laboratories

Consulting, education, facilities

Impact of our research -> matis.is

New Wave of Flavours – on new ways of developing and processing seaweed flavours Partners: Marinox, University of Iceland Research fund: AVS

Enzymes - definition

- Enzymes are **proteins** that increase the rate of reaction by lowering the energy of activation
- They <u>catalyse</u> nearly all the chemical reactions taking place in the cells of the body
- Not altered or consumed during reaction
- Reusable

Activation energy

- Like all catalysts, enzymes work by lowering the activation energy (Ea or ΔG‡) for a reaction, thus dramatically accelerating the rate of the reaction.
- Most enzyme reaction rates are <u>millions</u> of times faster than those of comparable uncatalyzed reactions.

Enzymatic reaction

Enzymes

✓ Proteins that accelerate chemical reactions [E]

Molecules called

- √ Substrates [S]
- ✓ Products [P]

Enzymes - classes

Oxidoreductases

Transferases

Hydrolases

Lyases

<u>Isomerases</u>

Ligases

Catalase (Oxireductase)

Serine protease

Pictures from Wikipedia

Types of enzymes used in food production

Class	Enzyme	Role
Oxidoreductases	Glucose oxidase Laccases Lipoxygenase	Dough Clarification of juices, flavour enhancer (beer) Dough strengthening, bread whitening
Transferases	Cyclodextrin Fructosyltransferase Transglutaminase	Cyclodextrin production Synthesis of fructose oligomers Modification of viscoelastic properties, dough processing, meat processing
Lyases	Acetolactate decarboxylase	Beer maturation
Isomerases	Xylose (Glucose) isomerase	Glucose isomerization to fructose
Hydrolases	Next slide	

From: Fernandes 2010. https://doi.org/10.4061%2F2010%2F862537

Hydrolases have many roles in food production (1/2)

Enzyme	Role
	Starch liquefaction and sachcarification
Amylacoc	Increasing shelf life and improving quality by retaining moist, elastic and soft nature
Amylases	Bread softness and volume, flour adjustment, ensuring uniform yeast fermentation
	Juice treatment, low calorie beer
Galactosidase	Viscosity reduction in lupins and grain legumes used in animal feed, enhanced digestibility
Glucanase	Viscosity reduction in barley and oats used in animal feed, enhanced digestibility
Glucoamylase	Saccharification
Invertase	Sucrose hydrolysis, production of invert sugar syrup
Lactase	Lactose hydrolysis, whey hydrolysis
Lipase	Cheese flavour, in-situ emulsification for dough conditioning, support for lipid digestion in young animals, synthesis of aromatic molecules

From: Fernandes 2010. https://doi.org/10.4061%2F2010%2F86

Hydrolases have many roles in food production (2/2)

Enzyme	Role
Amylases	Starch liquefaction and sachcarification
Proteases	Protein hydrolysis, milk clotting, low-allergenic infant-food formulation, enhanced digestibility and utilization, flavour improvement in milk and cheese, meat tenderizer, prevention of chill haze formation in brewing
Pectinase	Mash treatment, juice clarification
Peptidase	Hydrolysis of proteins (namely, soy, gluten) for savoury flavours, cheese ripening
Phospholipase	In-situ emulsification for dough conditioning
Phytases	Release of phosphate from phytate, enhanced digestibility
Pullulanase	Saccharification
Xylanases	Viscosity reduction, enhanced digestibility, dough conditioning

From: Fernandes 2010. https://doi.org/10.4061%2F2010%2F86

Types of protein structures

https://www.thoughtco.com/protein-structure-3/73563

Amino-acids

Proteins are made from amino acids

A GUIDE TO THE TWENTY COMMON AMINO ACIDS

AMINO ACIDS ARE THE BUILDING BLOCKS OF PROTEINS IN LIVING ORGANISMS. THERE ARE OVER 500 AMINO ACIDS FOUND IN NATURE - HOWEVER, THE HUMAN GENETIC CODE ONLY DIRECTLY ENCODES 20. 'ESSENTIAL' AMINO ACIDS MUST BE OBTAINED FROM THE DIET, WHILST NON-ESSENTIAL AMINO ACIDS CAN BE SYNTHESISED IN THE BODY.

Amino-acids and peptide bond

https://microbenotes.com/peptide-bond/

COD – example of use of enzymes in food

Production of cod fillet

Side streams

codland

Fish enzyme from the intestines

Cod skin, collagen and peptides

Enzymes - hydrolysis

Pre-process?

Enzyme to use?

Conditions (pH, T, t, E/S)

How to stop hydrolysis?

Post treatment?

Protis – fish protein hydrolysates

Feel Iceland products

AMINO MARINE COLLAGEN

AMINO MARINE COLLAGEN

JOINT REWIND - JOINT THERAPY

Thanks for you attention

