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SUMMARY

Type I and/or type II interferons (IFNs) are important in establishing uterine 
receptivity to implantation in mammals. Gene expression effected by IFNs 
may be induced, stimulated or inhibited, but most are IFN-stimulated genes 
(ISGs). Effects of IFNs range from pregnancy recognition signaling in 
ruminants by IFN tau (IFNT) to effects on cellular functions of the uterus 
and uterine vasculature. For most, if not all, actions of IFNs on the uterus, 
progesterone (P4) is permissive to ISG expression, with genes being induced 
by IFN or induced by P4 and stimulated by IFN. Uterine receptivity to 
implantation is P4-dependent; however, implantation events are preceded by 
loss of expression of progesterone (PGR) and estrogen (ESR1) receptors 
by uterine epithelia. Thus, P4 likely stimulates PGR-positive stromal cells 
to express one or more progestamedins, e.g., fibroblast growth factors-
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7 and -10, and/or hepatocyte growth factor, that act via their respective 
receptors on uterine epithelia and trophectoderm to regulate expression 
of ISGs. FGF10 appears to be the most important progestamedin in sheep 
uteri during pregnancy. Sequential effects of P4 to induce and IFNs to 
stimulate gene expression suggest that P4 and IFNs activate complimentary 
cell signaling pathways to modulate expression of genes for attachment of 
trophectoderm to uterine lumenal and superficial glandular epithelia (LE/
sGE), modify phenotype of uterine stromal cells, silence PGR and ESR1 
genes, signal pregnancy recognition, suppress genes for immune recognition, 
alter membrane permeability to enhance conceptus-maternal exchange of 
factors, increase endometrial vascularity and activate genes for transport 
of nutrients into the uterine lumen. In ewes, IFNT abrogrates the uterine 
luteolytic mechanism and stimulates expression of classical ISGs by GE 
and stromal cells, whereas LE/sGE express P4-induced and IFNT-stimulated 
genes important for uterine receptivity to implantation and conceptus 
development. These include wingless-type MMTV (mouse mammary tumor 
virus) integration site family member 7A (WNT7A) induced by IFNT, as 
well as galectin, proteases, protease inhibitors, transporters for glucose and 
amino acids, gastrin releasing polypeptide, insulin-like growth factor binding 
protein 1 and a hypoxia inducible factor. The specific functions of IFNs and 
ISGs induced in primates, pigs and other mammals during pregnancy are not 
known, but likely are important in establishment of pregnancy. Understanding 
the roles of IFNs and ISGs in uterine receptivity for implantation is necessary 
to develop strategies to enhance reproductive health and fertility in humans 
and domestic animals. Reproductive Biology 2008 8 3:179-211.
Key words: interferons, progesterone, pregnancy, interferon-stimulate 
genes, progestamedins, fertility, reproductive health

INTRODUCTION

Type I and/or type II interferons (IFNs) appear to be important in establishing 
uterine receptivity to implantation in most mammals as they affect expression 
of many genes [151, 152]. These IFN-stimulated genes (ISGs) are expressed 
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in a specific temporal and spatial (cell-specific) manner. For most, if not all 
actions of IFNs on the uterus, progesterone (P4) is permissive to expression 
of ISGs. In most cases, P4 induces and IFN stimulates expression of many 
ISGs, but IFN may stimulate expression of some ISGs directly with 
P4 being permissive. There is a paradox with respect to actions of P4 on 
uterine receptivity to implantation. That is, receptivity is P4-dependent, but 
implantation is preceded by loss of expression of progesterone (PGR) and 
estrogen (ESR1) receptors by uterine epithelia in all animals studied [142, 
148, 151, 152]. The P4-induced down-regulation of PGR in uterine luminal 
(LE), superficial glandular (sGE) and glandular (GE) epithelia of ewes is a 
prerequisite for expression of ISGs. Thus, P4 likely acts on PGR-positive 
stromal cells to increase expression of progestamedins that include fibroblast 
growth factors-7 (FGF7) and -10 (FGF10) and hepatocyte growth factor 
(HGF) that may exert paracrine effects on uterine epithelia and conceptus 
trophectoderm that express their respective receptors, FGFR2IIIb and MET 
(protooncogene MET; [24, 25, 81-83, 142, 148, 151]). In ewes, FGF10 
appears to be the progestamedin responsive to P4 [136]. In sheep, classical  
ISGs e.g., interferon stimulated gene 15, Mx (Mouse Myxovirus Resistance 1)  
and 2’,5’ oligoadenylate synthase induced by IFNT are limited to uterine 
GE and stromal cells because uterine LE/sGE express interferon regulatory 
factor 2 (IRF2; [28]) which is a potent inhibitor of gene transcription that 
silences expression of genes such as ESR1 and signal transducer and activator 
of transcription factor 1 (STAT1; [121, 154, 155]). Because ovine uterine 
LE/sGE lack PGR and STAT1, IFNT is unable to affect gene transcription 
through the Janus activated kinases (JAKs) and tyrosine kinase 2 (TYK2) 
cell signaling pathway and P4 is unable to activate gene transcription through 
nuclear PGR. Rather, both P4-induced progestamedins and IFNT can stimulate 
gene expression in uterine LE/sGE through activation of phosphoinositide 
3-kinase (PI3K)/ mitogen activated protein kinase (MAPK) cell signaling 
pathways (see fig. 1; [71, 107, 114, 121, 131, 156]).

Uterine receptivity to implantation involves changes in expression of 
genes for attachment of trophectoderm to uterine LE/sGE, modification of 
uterine stromal cell phenotype, silencing PGR and ESR1 genes in uterine 
epithelia, signaling for pregnancy recognition, suppression of genes 
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Figure 1. Hypothesis on the roles of progesterone (P4), progestamedins (FGF7, 
FGF10 and HGF) and interferon tau (IFNT) on gene expression and secretory 
functions of ovine uterine lumenal and superficial glandular epithelia (LE/sGE) 
that lack both progesterone receptor (PGR) and signal transducer and activator 
of transcription 1 (STAT1). Ovine uterine LE/sGE lack detectable PGR and 
STAT1, indicating that P4 and IFNT use non-classical signaling pathways to 
regulate expression of P4-induced and IFNT-stimulated genes. The stroma remains 
PGR-positive. Results from our laboratory indicate that P4 increases production 
primarily of stromal-derived FGF10 and very low levels of HGF that can act on 
uterine LE/sGE and conceptus trophectoderm cells that express FGFR2(IIIb) and 
MET receptors for FGF10 and HGF, respectively, to activate mitogen activated 
protein kinase (MAPK) and phosphoinositide 3-kinase (PI3K) cell signaling. 
Progestamedins and type I IFNs activate the PI3K and AKT1 signaling pathways 
in other cell types [see 14]. Our unpublished results [J-Y Kim, G. Song, T.E. 
Spencer and F.W. Bazer] indicate that IFNT activates p38 MAPK and PI3K-AKT1-
FRAP1(mTOR) signaling pathways and that promoter/enhancer regions of novel 
P4-induced and IFNT-stimulated genes expressed in uterine LE/sGE have binding 
sites for transcription factors activated by MAPK and PI3K signaling pathways.
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for immune recognition of the conceptus (embryo/fetus and associated 
membranes), alterations in membrane permeability to enhance conceptus-
maternal exchange of factors, increased vascularity of the endometrium 
and activation of genes for transport of nutrients into the uterine lumen [40, 
58, 151, 152]. In sheep, effects of IFNT are pleiotrophic in that it signals 
pregnancy recognition by abrograting the uterine luteolytic mechanism, 
stimulates expression of classical ISGs by GE and stromal cells, and 
stimulates expression of P4-induced and IFNT-stimulated genes by LE/sGE 
that lack both PGR and STAT1 [148, 151, 152]. The known P4-induced and 
IFNT-stimulated genes expressed by ovine uterine LE/sGE are listed in 
Table 1. Understanding demonstrated and potential pleiotrophic effects of 

Table 1. Progesterone-induced and interferon tau-stimulated genes expressed by 
ovine uterine lumenal and superficial glandular epithelia

Gene Function of Gene Product Reference

HIF2A transcription factor: induces VEGF (angiogenesis) 
and SLC2A1 (glucose transport) 146

SLC2A1 facilitative glucose transporter 50
SLC5A11 sodium-dependent glucose transporter 50

SLC7A2B
solute carrier family 7 (cationic amino acid 
transporter, y+ system), member 2, arginine 
transporter

footnote

SLC1A5 solute carrier family 1 (neutral amino acid 
transporter), member 5, glutamine transporter footnote

CTSL cathepsin L, cysteine proteinase affecting protein 
catabolism 144

CST3 cystatin C, proteinase inhibitor 145

LGALS15 galectin 15; lectin: stimulates migration and adhesion 
of trophectoderm cells 39, 135 

GRP gastrin releasing polypeptide: affects morphogenesis, 
migration and adhesion of cells, and angiogenesis 147

IGFBP1 insulin-like growth factor binding protein 1: 
modulation of mitogenesis 136

WNT7A secreted morphogen: cell fate and patterning 62
Footnote: Unpublished results (H. Gao, G. Wu, T.E. Spencer, G.A. Johnson and F.W. Bazer)
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IFNT and other IFNs, as well as ISGs in uterine receptivity for implantation 
is required for development of strategies to enhance reproductive health 
and fertility in humans and animals (see fig. 2).

INTERFERONS AND UTERINE RECEPTIVITY

Conceptus trophectoderm must signal pregnancy recognition to maintain a 
functional corpus luteum (CL) for production of P4 that is permissive to ac-
tions of IFNs, growth factors and cytokines responsible for uterine receptivity 
to implantation [41, 143, 151]. In primates, chorionic gonadotrophin (CG) is 
the luteotrophic signal that acts directly via receptors for luteinizing hormone  

Figure 2. The effects of progesterone (P4) and interferon tau (IFNT) are pleiotrophic in 
that they are required for signaling pregnancy recognition by abrograting the uterine 
luteolytic mechanism, stimulating expression of classical interferon stimulated 
genes (ISGs) by uterine luminal (LE), superficial glandular (sGE), and glandular 
(GE) epithelia, and stromal cells (SC), stimulating expression of P4-induced and 
IFNT-stimulated genes by uterine LE/sGE that lack both PGR and STAT1 [148, 151, 
152] and acting systemically to modulate the maternal immune system [11].
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to maintain structural and functional integrity of the CL [41]. In ruminants 
and pigs, antiluteolytic hormones for pregnancy recognition are IFNT and 
estradiol, respectively. IFNT silences expression of ESR1 and oxytocin  
receptor (OXTR) to prevent oxytocin-induced release of luteolytic pulses of 
prostaglandin F2α (PGF) for CL maintenance [151]. In pigs, estradiol, likely in 
combination with prolactin, exerts antiluteolytic effects on uterine epithelia  
to prevent endocrine release of luteolytic PGF [10]. However, pig conceptus 
trophectoderm also expresses both type I (interferon delta, IFND) and type 
II (interferon gamma, IFNG) interferons [22].

Although IFNT is the only known IFN to act as the pregnancy recognition 
signal, IFNs appear to affect uterine receptivity, decidualization and placental 
growth and development in primates, ruminants, pigs and rodents [8, 63, 
119, 124, 151]. The IFN family includes multiple type I IFNs and one type II 
IFN (IFN gamma, IFNG; [118, 128]). Type I IFNs that share high structural 
homology include interferons alpha (IFNA; 13 subtypes), beta (IFNB), delta 
(IFND), tau (IFNT), and omega (IFNW1). IFNT is unique to ruminants 
and IFND is unique to pigs [91, 127, 128] and perhaps horses [157]. IFNT 
shares highest identity to IFN omega with respect to biological activities and 
induction of ISGs in endometria and human cell lines [127, 128].

All type I IFNs bind a common receptor composed of two subunits, 
IFNAR1 and IFNAR2, to induce cell signaling via the Janus activated kinases 
(JAKs) and tyrosine kinase 2 (TYK2) pathways, respectively [32, 131, 153]. 
Signaling by type II IFNG involves activation of the JAK family with JAK1 
and JAK2 constitutively associated with IFNGR1 and IFNGR2 subunits  
of  type  II  IFNR,  respectively. IFNG stimulates autophosphorylation and 
subsequent tyrosine phosphorylation and homodimerization of STAT1. 
STAT1 homodimers translocate to the nucleus and bind GAS elements in 
promoter regions of IFNG-regulated genes to initiate transcription [94]. 
There is evidence that IFNs are expressed by human placentae (IFNA, 
IFNB, IFNG), decidua (IFNA, IFNB and IFNG) and fetal membranes 
(IFNA, IFNG), as well as conceptus trophectoderm of sheep (IFNT), pig 
(IFND and IFNG) and rodent uteri and/or conceptuses (IFNA, IFNB; [1, 
11, 16, 23, 91]). These IFNs have classical antiviral, antiproliferative and 
immunosuppressive effects, as well as unique biological activities.
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IFNT: PREGNANCY RECOGNITION AND UTERINE RECEPTI- 
VITY TO IMPLANTATION IN RUMINANTS

Pregnancy Recognition Signaling by IFNT. IFNT, the pregnancy 
recognition signal in ruminants, suppresses transcription of ESR1 and, 
therefore, estrogen-induced expression of the oxytocin receptor (OXTR) 
gene in uterine LE/sGE to abrogate development of the endometrial 
luteolytic mechanism that is dependent on oxytocin-induced luteolytic 
pulses of PGF [148, 151]. However, basal production of PGF is higher in 
pregnant than cyclic ewes due to continued expression of prostaglandin  
endoperoxide synthase 2. Further, IFNT inhibits ESR1 expression to pre- 
vent estrogens from inducing PGR in endometrial epithelia as the absence 
of PGR in uterine epithelia is required for expression of P4-induced and 
IFNT-stimulated genes in ovine uterine LE/sGE [see 58, 152].

Uterine Receptivity to Implantation. Implantation of blastocysts of 
ruminants involves: 1) hatching from the zona pellucida; 2) contact with 
uterine LE/sGE and orientation of the blastocyst; 3) apposition between 
trophectoderm and uterine LE/sGE; 4) adhesion of trophectoderm to 
uterine LE/sGE; and 5) limited endometrial invasion [60]. Initiation of 
implantation in sheep on Days 12 and 13 coincides with loss of PGR 
from uterine epithelia, but not stromal or myometrial cells, and reduced 
expression of anti-adhesive genes, such as MUC1 from uterine LE to 
allow contact with trophectoderm for initiation of implantation [148, 
151]. As uterine receptivity and implantation occur after uterine LE/sGE 
cease expressing PGR, P4-regulated LE/sGE and GE functions are likely 
directed by progestamedins [148, 151], particularly FGF10 in sheep [13]. 
The P4-induced and IFNT-stimulated genes expressed by ovine uterine LE/
sGE important during the period of uterine receptivity to implantation and 
conceptus development are listed in Table 1.

Galectin 15 is secreted into the uterine lumen where it binds integrins on 
cell surfaces to stimulate trophectoderm cell attachment and migration in vitro 
[39]. Cathepsins degrade extracellular matrix, catabolize intracellular proteins, 
process prohormones, and regulate uterine receptivity for implantation 
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and trophoblast invasion in many species, including humans [6, 132, 133]. 
Cathepsin L and its inhibitor, cystatin C, are coordinately expressed by ovine 
uterine LE/sGE and conceptus trophectoderm during pregnancy [144, 145], 
probably to modify their glycocalyx [132] and/or secreted extracellular matrix 
proteins during apposition and adhesion phases of implantation.

WNT7A, an IFNT-stimulated gene unique to ovine endometrial LE, may 
mediate trophoblast-epithelial interactions critical for uterine receptivity to 
implantation [62]. The WNT family of genes (19 in human) encode highly 
conserved secreted glycoproteins that regulate cell and tissue growth 
and differentiation during embryonic development [123] and coordinate 
uterine-conceptus interactions during implantation in mice [35, 68, 110, 
111] and perhaps humans [84, 159]. WNT7A, a LE-specific gene in all 
mammals studied, stimulates ovine trophectoderm cell proliferation by 
activating the canonical WNT signaling pathway which is proposed to 
coordinate conceptus-endometrial interactions required for implantation 
in mice and humans [62].

The hypoxia-inducible (HIF) gene family includes three alpha (HIF1A, 
HIF2A, and HIF3A) and three beta (HIF1B [also known as aryl hydrocarbon 
receptor nuclear translocator], HIF2B, and HIF3B) subunits. Increases 
in HIF1A expression in response to hypoxia increases erythropoiesis, 
glycolysis and angiogenesis to counteract oxygen deficiency and HIF2A 
is expressed predominantly in highly vascularized tissues such as heart, 
lung, and placenta [37, 139]. Over 200 genes respond to HIF, including 
erythropoietin (EPO), CBP/p300-interacting transactivator with Glu/Asp-
rich carboxy-terminal domain 2 (CITED2), vascular endothelial growth 
factor (VEGF), GLUT1/SLC2A1, and insulin-like growth factor 2 (IGF2). 
Mice with lacking Hif1a, Hif2a or Hif1b (Arnt) die at mid-gestation due to 
vascular defects in the embryo and placenta [5, 31, 74, 89, 101, 117, 140]. 
In peri-implantation mouse uteri, P4 increases Hif1a in uterine LE/sGE and 
estrogen increases Hif2a in uterine stroma [31]. HIF1A and HIF2A are P4-
induced and IFNT-stimulated genes in LE/sGE and CITED2 and VEGF are 
expressed in ovine endometria and conceptus trophectoderm [146]. Thus, 
HIF2A may mediate actions of P4 and IFNT to establish uterine receptivity 
to implantation and conceptus development in sheep [146].
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Gastrin-releasing peptide (GRP), a mammalian homologue of bombesin 
from the amphibian Bombina bombina, induces gastrin secretion by porcine 
gastric tissue [105, 116]. GRP is also expressed in the hypothalamus, anterior 
pituitary, gastrointestinal tract, lung, and pancreas [116], as well as in uteri 
of sheep, cattle and humans [17-19, 47, 48, 54-56, 141, 167-170, 174, 175]. 
GRP mRNA is expressed in uteri of cyclic and pregnant ewes and GRP-
derived peptides have been detected in the uterine lumen and in allantoic 
fluid [48, 55, 168, 170, 174]. The cell-specific location of GRP receptors 
in ovine uteri is not known, but kidneys of fetal and adult sheep express 
GRP receptors [36] and they are present in human uterine myometrium, 
subsets of secretory cells in endometrial glands and subsets of endometrial 
blood vessels [44, 167]. GRP is a potent mitogen for cancer cells [116] 
and exerts effects on cell morphogenesis, migration, and adhesion, as well 
as angiogenesis [104, 116]. These biological actions of GRP likely affect 
peri-implantation growth and development of conceptuses in ruminants 
[59, 149].

GRP expression is greater in endometria of  Day 14 pregnant compared  
to Day 14 cyclic ewes and its expression is stimulated by IFNT in ewes 
treated with P4, but not by P4 alone [169]. Further, estrogen and/or 
estrogen with P4 decrease GRP mRNA levels in endometria of long-term 
ovariectomized ewes [169]. Our laboratory determined that: 1) GRP is 
an IFNT-stimulated gene in LE/sGE; 2) changes in GRP expression are 
coordinate with growth and development of the blastocyst into a filamen- 
tous conceptus; 3) up-regulation of GRP expression occurs in response 
to early P4 administration to pregnant ewes that advanced formation of 
filamentous conceptuses [147].

The insulin-like growth factor (IGF) family consists of IGF1, IGF2, and 
their receptors IGF1R and IGF2R, as well as seven IGF binding proteins 
(IGFBPs 1-7) which modulate IGF activity and bioavailability [42, 65, 
113, 160]. IGF1 and IGF2 have mitogenic and differentiative properties 
that may influence embryonic and placental development in humans, 
rodents, and domestic animals [73, 162, 163]. In humans, the IGF1R binds 
IGF1 and IGF2 with high and moderate affinities, respectively [160]. 
IGFBPs can enhance or inhibit activity of IGFs [30, 76]. IGFBPs 1-6 
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bind IGFs with high affinity, but are released by actions of proteases to 
act on adjacent cells expressing IGF1R. IGFBP proteases include matrix 
metalloproteinases, kallikreins, cathepsins, pregnancy associated plasma 
protein A, calpain and other serine proteases [65]. Thus, activities of IGFs 
are affected by availability of receptors, abundance of IGFBPs and activities 
of specific proteases that influence local concentrations of IGF. In pigs, 
proteolytic cleavage of IGFBPs to yield free IGF occurs in association 
with elongation of the conceptus [95]. In the cow, IGFBP1-5 are expressed 
in endometria during the peri-implantation period of pregnancy [86] and 
blastocyst development can be stimulated by exogenous GH that increases 
IGF1 [158].

Expression of IGF1 in ovine uteri is predominantly in endometrial 
stromal cells and not affected by early P4 although IGF1 mRNA levels 
decreased in stromal cells between Days 9 and 12 of pregnancy [136]. 
In contrast, IGF2 mRNA levels were unaffected by day of pregnancy 
or early P4 treatment. The presence of IGF1 and IGF2 mRNA in uterine 
stromal cells during pregnancy suggests an epitheliomesenchymal role(s) 
in ovine endometria via IGF1R in uterine LE and GE [57, 136]. Results 
from studies of mice and humans suggest that IGF1 regulates effects of 
estrogen on proliferation of endometrial epithelia [57, 134]. The induction 
of IGF2 mRNA in uterine LE/sGE of ewes treated with both P4 and 
RU486 suggests that P4 suppresses IGF2 expression in uterine epithelia 
[136]. Nevertheless, IGF1 and IGF2 in ovine and bovine uterine luminal 
histotroph may regulate blastocyst growth and development [86-88]. Both 
ovine and bovine pre-implantation embryos [163], as well as Day 15 
elongated bovine conceptuses express IGF1R [137] which may allow 
IGF1 to stimulate proliferation and inhibit apoptosis [77]. In ewes, total 
IGF1 in the uterine lumen is 50% lower in early P4-treated ewes on Day 9, 
but not on Day 12, which suggests that: 1) Day 9 is a critical period when 
developing blastocysts have unrestricted access to free IGF prior to up-
regulation of epithelial IGFBP1 and IGFBP3 between Days 9 and 12; and  
2) the reduction in total IGF1 protein in the uterine lumen is due to its rapid 
utilization by blastocysts [136]. Indeed, blastocysts recovered from early 
P4-treated ewes were larger than those from CO-treated ewes on Day 9 
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[135]. Access of blastocysts to IGF1 in the uterine lumen may be limited 
due to increases in IGFBP1 and IGFBP3 in uterine LE/sGE between 
Days 9 and 12 of pregnancy. IGF2 can stimulate ovine trophectoderm 
cell migration [87] which may be critical for blastocyst elongation and 
formation of a filamentous conceptus [149]. Thus, interactions between 
IGFBP1, IGFBP3, IGF1 and IGF2 in the uterine lumen likely influence 
endometrial functions, as well as blastocyst growth and development.

The energy substrate for mammalian conceptuses switches from pyru-
vate to glucose at the blastocyst stage which is coordinate with increases 
in expression of uterine glucose transport proteins [33, 126, 178]. In ovine 
uteri, total recoverable glucose increases 12-fold between Days 10 and 15 
of pregnancy coincident with increases in expression of the glucose trans-
porters SLC2A1 and SLC5A11 in ovine uterine LE/sGE and SLC2A3 in 
conceptus trophectoderm [50]. Similarly, expression of the cationic amino 
acid transporter, y+ system, member 2 (SLC7A2B) increases coinciden-
tally with increases in total recoverable arginine between Days 10 and 15 
of pregnancy [50, 67].

Glucose, a major nutrient for conceptuses and cells of the uterus [112], is 
delivered into the uterine lumen by glucose transporters [97, 115] as neither 
conceptuses nor uterine endometrium can carry-out gluconeogenesis. 
Transport of glucose from the maternal circulation into the uterine lumen 
is essential for pregnancy [138] as it can enhance trophoblast cell growth 
and proliferation by activating the glutamine:fructose-6-phosphate 
amidotransferase (GFAT)-mediated FK506 binding protein 12-rapamycin 
associated protein 1 (FRAP1, formerly mTOR) signaling pathway [164]. 
Accordingly, total glucose in uterine lumenal fluid increased 6-fold between 
Days 10 and 15 of gestation in ewes [49] in association with rapid growth 
and development of blastocysts from spherical, to tubular and filamentous 
conceptuses [43].

Transport of glucose across the plasma membrane can be mediated 
by facilitative transporters such as solute carriers SLC2A and/or sodium-
dependent transporters such as sodium/glucose cotransporters SLC5A 
[171]. Sodium-dependent glucose transporters are necessary to transport 
glucose against electrochemical gradients, e.g., from endometrium 
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into the uterine lumen [51]. Our laboratory investigated effects of the 
estrous cycle, pregnancy, P4 and IFNT on expression of both facilitative 
(SLC2A1, SLC2A3 and SLC2A4) and sodium-dependent (SLC5A1 and 
SLC5A11) glucose transporters in ovine uterine endometria between Days 
10 to 16 of the estrous cycle and Days 10 and 20 of pregnancy, as well 
as in conceptuses from Days 10 to 20 of pregnancy [50]. SLC2A1 and 
SLC5A1 mRNAs and proteins were most abundant in uterine LE/sGE, 
whereas SLC2A4 was present in stromal cells and GE. SLC5A11 mRNA 
was most abundant in endometrial GE. SLC2A1, SLC2A3 and SLC2A4, 
SLC5A1 and SLC5A11 were expressed in trophectoderm and endoderm 
of conceptuses, and SLC2A1, SLC5A1 and SLC5A11 mRNAs were more 
abundant in endometria from pregnant than cyclic ewes. Progesterone 
increased SLC2A1, SLC5A11 and SLC2A4 mRNAs in LE/sGE and SLC5A1 
in GE of uteri from ovariectomized ewes. Further, P4 induced and IFNT 
stimulated expression of SLC2A1 and SLC5A11 indicating differential 
expression of facilitative and sodium-dependent glucose transporters in 
ovine uteri and conceptuses for transport and uptake of glucose during the 
peri-implantation period of pregnancy [50].

Cationic amino acid transporters transport amino acids such as arginine 
that is essential for fetal-placental growth and development [173], 
including synthesis of nitric oxide (NO) and polyamines [172]. NO is 
a major regulator of angiogenesis [106] and utero-placental-fetal blood 
flows which affect delivery of nutrients and oxygen from mother to fetus 
[14] and polyamines are essential for DNA and protein synthesis, and 
proliferation and differentiation of cells [70]. Further, arginine regulates 
metabolic pathways critical for nutrient utilization and protein deposition 
through FKBP12-rapamycin complex-associated protein 1 (FRAP1) 
and NO signaling pathways [75, 102, 103]. Our laboratory reported that 
arginine increased 10-fold in uterine flushings between Days 10 and 15 
of pregnancy, i.e., the peri-implantation period [49] and hypothesized 
that arginine transport into the uterine lumen is especially important for 
ruminants and pigs that establish synepitheliochorial and epitheliochorial 
placentae, respectively after conceptuses undergo rapid elongation during 
a protracted peri-implantation period [60].
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Transport of L-arginine is primarily by the Na+-independent System y+ 
for cationic amino acids that has low affinity, but high capacity in cells, and 
designated SLC7A1, SLC7A2, and SLC7A3. System y+ (SLC7A1, 2, and 
3) cationic amino acid transporters in uteri of cyclic and pregnant ewes and 
conceptuses were characterized to determine effects of pregnancy, P4 and 
IFNT on their expression [H. Gao, G. Wu, T.E. Spencer and F.W. Bazer, 
unpublished results]. SLC7A1 mRNA was most abundant in endometrial 
LE/sGE on Day 16 of the estrous cycle and Days 16 to 20 of pregnancy, 
whereas SLC7A2 mRNA was most abundant in LE and mid- to deep GE on 
Days 14 to 20 of gestation, but SLC7A3 levels were not affected by day or 
pregnancy status. SLC7A1, SLC7A2 and SLC7A 3 mRNAs were expressed 
in both trophectoderm and endoderm of conceptuses. Long-term treatment 
of ovariectomized ewes with P4 stimulated SLC7A1 in LE and GE, and IFNT 
tended to increase SLC7A1 abundance in LE. However, SLC7A2 mRNA 
was clearly induced by P4 and stimulated by IFNT in endometrial LE/sGE. 
These results indicate coordinate changes in SLC7A1, SLC7A2 and SLC7A3 
expression in uterine endometria and conceptuses to affect transport of 
arginine critical to conceptus growth, development and survival.

Interferon tau activation of the classical JAK-STAT-IRF1 signaling 
pathway in ovine endometrial stroma and GE in vivo and in human 2fTGH 
cells (human fibrosarcoma cell line) in vitro results in expression of many 
ISGs [see 151, 152]. These include: beta-2 microglobulin (B2M); bone 
marrow stromal cell antigen (BST); complement component c1r deficiency 
(C1R); complement component 1s subcomponent (C1S); cystatin c (CST3); 
cathepsin L (CTSL); chemokine, CXC motif, ligand 10 (CXCL10); dead H/
box 58 (DDX58); guanylate binding proteins (GBP1, GBP2, GBP3, GBP4, 
GBP5); interferon alpha inducible protein 6 (G1P3); gene associated with 
retinoid- and interferon-induced mortality 19 (GRIM19); HSXIAPF1; 
interferon-inducible proteins (IFI27, IFI35); interferon induced with he-
licase c domain protein 1 (IFIH1); interferon-induced protein with tet-
ratricopeptide repeats (IFIT1, IFIT2, IFIT3, IFIT5);interferon-induced 
transmembrane proteins (IFITM1, IFITM3); interferon regulatory factors 
(IRF1, IRF2, IRF6, IRF9); interferon-stimulated gene 15 (ISG15); major 
histocompatibility complex class I chain-related gene (MIC); homolog of 
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myxovirus (influenza virus) resistance 1 and 2 (MX1, MX2); NMYC inter-
actor (NMI); 2’,5’oligoadenylate synthetase (OAS1, OAS2, OAS3); phos-
pholipids scrambalase-1 (PLSCR1); prolactin receptor (PRLR); RSAD2; 
receptor-transporting protein 4 (RTP4); complement component 1 inhibi-
tor (SERPING1); nuclear body protein SP140 (SP140); signal transducer 
and activator of transcription (STAT1, STAT2); and ubiquitin-activating 
enzyme e1-like (UBE1L).

Silencing of classical ISGs in uterine LE/sGE during early pregnancy is 
important for maternal tolerance of the fetal allograft. Major histocompatibil-
ity complex (MHC) class I molecules, consisting of an alpha chain and beta2-
microglobulin (B2M), regulate immune rejection responses by discriminating 
self and non-self and are increased by type I IFNs. In the ovine uterus, MHC 
class I alpha chain and B2M are expressed primarily in endometrial LE/sGE 
on Days 10 and 12 of the estrous cycle and pregnancy [29]. However, on 
Days 14 to 20 of pregnancy, increases in MHC class I and B2M expression 
are restricted to endometrial stromal cells and GE. Accordingly, intrauterine 
infusion of IFNT increased MHC class I and B2M expression in endometrial 
stromal cells and GE, but not uterine LE/sGE. During pregnancy, expression 
of MHC class I and B2M genes is also limited to uterine stromal cells and GE. 
Silencing MHC class I alpha chain and B2M genes in endometrial LE and sGE 
during pregnancy may be critical in preventing immune rejection of the con-
ceptus allograft. Similar results have been reported from studies of pigs [80].

INTERFERONS AND UTERINE RECEPTIVITY IN PRIMATES

Type I and type II IFNs are produced by human placenta and decidual 
cells [1-4, 16]. Human extravillous and villous trophoblast produce IFNA 
and IFNB when cultured in the presence of granulocyte-monocyte colony 
stimulating factor and platelet derived growth factor followed by infection 
with Sendai virus, while trophoblast cells produced IFNB in response to 
double stranded RNA or both IFNA and IFNB in response to Sendai and 
Newcastle Disease viruses [1, 4]. These IFNs may: 1) regulate proliferation 
of trophoblast or other cells in the uterus; 2) suppress mitogen-induced 
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proliferation of  T- and B-cells; 3) protect the conceptus from viral infections;  
4) regulate cellular differentiation and expression of cell surface antigens; 
5) stimulate expression of ε-globin, a component of embryonic hemoglobin; 
and 6) suppress expression of proto-oncogenes such as EGFR, c-erB2 and 
c-fms to affect trophoblast growth and differentiation [1, 4].

Many ISGs induced by IFNT in ruminants are among the most upregulated 
genes in human endometrial stromal cells co-cultured with human trophoblast 
[124] or treated with human trophoblast conditioned medium [63] and in 
endometria of baboons, domestic animals, and laboratory animals [8, 9, 13, 
15, 20, 26, 27, 66, 85, 93, 99, 100, 108, 125]. These include: DDX58, GBP1, 
GBP2, HSXIAPF1, IFIH1, IFIT1, IFIT2, IFIT3, IFIT5, IFI35, IRF1, ISG15, 
MIC, MX1, MX2, NMI, OAS1, OAS2, OAS3, PLSCR1, PRLR, RSAD2, 
RTP4, SERPING1, STAT1, STAT2. During the peri-implantation period 
of pregnancy, increases in B2M, ISG15, GBP1, IFI27 and IRF1 occur in 
endometria of humans, baboons, domestic animals, and laboratory animals 
[2-5, 13, 20, 26, 29, 31, 66, 85, 93, 99]. Expression of guanylate binding 
protein 1 (GBP1), induced by both IFNA and IFNG, is highest during the 
mid-secretory phase of the menstrual cycle and is most closely associated 
with temporal changes in IFNG rather than IFNA [93]. Although GBP1, a 
GTPase, is a marker of uterine receptivity to implantation, its function is not 
known; however, Mx proteins, also GTPases, are ISGs in most species that 
may protect against viral infection. Li et al. [99] reported that expression 
of p27 (cyclin-dependent kinase inhibitor 1b; CDKN1B), which has high 
homology to interferon regulated gene 1 (IRG1), increases in Ishikawa cells 
in response to IFNA and that estradiol and IFNA exert synergistic effects 
to stimulate p27 preceding cell proliferation. The p27 gene is expressed 
during the window of implantation in humans and is considered essential 
for normal endometrial proliferation [38]. A shift in endometrial production 
from PGF to PGE is also associated with implantation in humans with IFNA 
suppressing P4-regulated production of  basal PGF, but not PGE [109]. Given 
that ISGs are highly upregulated in human endometrial stromal cells in 
response to human trophoblast conditioned culture medium, rigorous studies 
are required to clarify which IFNs are expressed by human trophoblast cells 
and define temporal and cell-specific expression of ISGs in human uteri 
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[69, 124]. IFNA from human syncytiotrophoblast [2] and explant cultures 
of human trophoblast [15] may stimulate transcription of the CGB gene 
without effects on cell proliferation [72]. However, this reported effect of 
IFNA on CGB production by bladder tumor cell lines must be confirmed 
using human trophoblast cells.

There are reports of undesirable effects of cytokines on development of 
human conceptuses. For example, the combined effects of tumor necrosis 
factor α (TNFA), IFNG and IL1B have been implicated in pregnancy 
failure, possibly due to loss of blood supply and conceptus death [120]. 
There is also evidence that CGB has “antiviral” activity, including antiviral 
lysozyme and antiviral RNases that inhibit HIV-1 by lysing HIV-1 proteins 
and degrading RNA from HIV-1-infected cells [96].

INTERFERONS, ESTROGENS, AND UTERINE RECEPTIVITY 
TO IMPLANTATION IN PIGS

After hatching from the zona pellucida, pig blastocysts expand and undergo 
a morphological transition to large spheres of 10 to 15 mm diameter and 
then tubular (15 mm by 50 mm) and filamentous (l mm by 100-200 mm) 
forms between Days 10 and 12 of pregnancy and achieve a length of 
800 to 1000 mm between Days 12 and 15 of pregnancy [12]. During this 
peri-implantation period of rapid elongation, the trophectoderm produces 
significant amounts of estrogen [152], as well as interferons gamma (IFNG) 
and delta (IFND; [21, 22, 150]).

The pregnancy recognition signal is estrogens produced by conceptus 
trophectoderm from Days 11 and 12 to Day 15 of pregnancy that directs se-
cretion of PGF away from the uterine vasculature (endocrine secretion) to 
secretion into the uterine lumen (exocrine secretion) where it is sequestered 
and metabolized to prevent luteolytic effects on the CL [10, 46]. The con-
ceptus estrogens also modulate uterine gene expression responsible for en-
dometrial remodeling for implantation between Days 13 and 25 of gestation 
[53]. Secreted phosphoprotein 1 (SPP1) and FGF7 are induced by estrogen in 
uterine LE to affect trophectoderm and LE adhesion, and signal transduction 
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and cell migration during the peri-implantation period [52, 82, 83, 166]. The 
trophectoderm also secretes interleukin-1 beta (IL1B) during this period and 
estrogen appears to modulate uterine responses to IL1B [129].

Pig conceptus trophectoderm is unique in secreting both type I and type 
II IFNs during the peri-implantation period. The major species (75% of 
antiviral activity) is type II IFN gamma (IFNG) and the other (25%) is 
type I IFN delta (IFND; [21, 22]). Abundant IFNG mRNA is detectable 
in porcine trophectoderm between Days 13 and 20 of pregnancy, whereas 
IFND mRNA is detectable in Day 14 conceptuses only by RT-PCR analysis 
(fig. 3; adapted from [79]). On Day 15 of pregnancy, immunoreactive 
IFNG and IFND proteins are co-localized to peri-nuclear membranes 
typically occupied by endoplasmic reticulum and Golgi apparatus, as well 
as cytoplasmic vesicles within clusters of trophectoderm cells along the 
endometrial LE (fig. 3; [21, 22, 79]). This expression is characterized by 
de novo appearance of zona occludens one (ZO1), a marker of epithelial 
tight junctions, on their basal aspect, suggesting changes in endometrial 
polarity [21]. In contrast to IFNT being the pregnancy recognition signal in 
ruminants, pig conceptus IFNs are not known to have antiluteolytic effects 
that alter length of interestrus intervals or concentrations of progesterone 
in plasma [21, 22], but they do stimulate PGE2 secretion [61].

Interactions of estrogen and IFNs regulate cell-type specific expression 
of multiple genes in the endometrium and highlight the complex interplay 
between endometrium and conceptus for pregnancy recognition and 
implantation (fig. 4, adapted from [79, 166]). Table 2 summarizes gene 
expression in pig uteri in response to intramuscular injections of estrogen 
and/or intra-uterine injections of pig conceptus secretory proteins containing 
IFNG and IFND [64, 78, 79, 82, 130, 166]. In pigs, implantation is non-
invasive and the placenta is epitheliochorial. Several genes induced in LE 
by estrogen include SPP1, FGF7, aldo-keto reducing family 1 member 
B1 (AKR1B1), cluster of differentiation 24 (CD24), neuromedin beta 
(NMB), signal transducer and activator of transcription 1 (STAT1) and IFN 
regulatory factor 2 (IRF2). In pigs, IRF2, a potent inhibitor of transcription 
of ISGs, is induced in uterine LE by estrogen. These genes likely have roles 
in establishment of pregnancy that include release of histotroph from uterine 
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epithelia into the uterine lumen and effects on conceptus trophectoderm to 
stimulate cell proliferation, attachment and development [64, 78, 79, 82, 
166]. In addition, IFND and IFNG may affect blastocyst attachment to LE 
by inducing labilization and remodeling of uterine epithelia to affect polarity 
and stimulate production of PGE2 [21, 22, 61].

In pigs, as in sheep, expression of IRF2 by uterine LE/sGE restricts 
expression of most ISGs to endometrial stroma and GE. Classical ISGs 
increased by IFNs in pig uterine stromal cells, GE and/or endothelium 

Figure 3. Interferon delta (IFND) and interferon gamma (IFNG) are synthesized 
by pig conceptuses. A) RT-PCR analysis of IFND mRNA in total RNA preparation 
from two Day 14 pig conceptuses. B) In situ hybridization analysis of IFNG 
protein in cryosections of trophectoderm from a Day 13 pig conceptus. Width of 
each field is 540 μm.
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Figure 4. Conceptus estrogens (E2) induce SPP1 in endometrial luminal 
epithelium (LE), and conceptus interferons delta and/or gamma induce STAT1 in 
endometrial stroma and glandular epithelium (GE) during the peri-implantation 
period of pregnancy in pigs. A) In situ hybridization analysis of SPP1 mRNA in 
an autoradiographic image (Biomax-MR; Kodak) of an entire cross-section of 
the uterine wall from a Day 15 cyclic pig treated with E2 revealed uniform SPP1 
mRNA within the entire LE of Day 15 cyclic pigs. B) Autoradiographic images 
of entire cross-sections of the uterine wall from Day 15 of pregnancy probed with 
radiolabeled antisense pig SPP1 cRNA (top panel), IFNG cRNA (middle panel) 
and STAT1 cRNA (bottom panel). The LE of the IFNG probed tissue is outlined 
in red for histological reference. Corresponding brightfield and darkfield images 
from the same sectioned uteri probed with SPP1 and STAT1 cRNAs are also 
shown. Endometrial SPP1 and STAT1 increase in close proximity to paracrine 
release of E2, as well as IFND and IFNG from implanting pig conceptuses. Width 
of each field of autoradiograph images is 20 mm. Width of each field of brightfield 
and darkfield images is 940 μm.
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include STAT1, STAT2, IRF1, MX1, swine leukocyte antigens (SLA) 1-3 
and 6-8, and beta 2 microglobulin (B2M; [64, 78-80]). The pregnancy-
specific roles of these uterine ISGs remain conjectural, but could: 1) 
affect decidual/stromal remodeling to protect the fetal semi-allograft from 

Table 2. Cell-specific expression of uterine genes in response to conceptus 
estrogen or IFND and IFNG in pigs [7, 78, 82, 129, 130, 177]. 

LE GE SC End
SPP1 E2 (+)

IFN
FGF7 E2 (+)

IFN
IRF2 E2 (+)

IFN
AKR1B1 E2 (+)

IFN
CD24 E2 (+)

IFN
NMB E2 (+)

IFN
STAT1 E2 (+)

IFN (+) (+)
STAT2 E2

IFN (+) (+)
IRF1 E2

IFN (+) (+)
MX1 E2

IFN (+) (+)
SLA E2

IFN (+) (+) (+)
B2M E2

IFN (+) (+) (+)
LE: luminal epithelium; GE: glandular epithelium; SC: stroma; End: endothelium
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immune rejection; 2) limit conceptus invasion into the endometrium; and/
or 3) stimulate development of uterine vasculature. Because IFNG can 
initiate endometrial vascular development [7, 177], it is hypothesized 
that conceptus-derived IFNG in pigs facilitates vascular changes for 
hematotrophic support of developing conceptuses.

Secretion of both IFND and IFNG is unique to pig conceptuses, but 
little is known about their interactions. Although type I IFND and type II 
IFNG each induce expression of largely non-overlapping sets of genes, they 
may also induce synergistic interactions leading to mutual reinforcement 
of physiological responses [98]. This synergy has been demonstrated for 
cooperative induction and maintenance of expression of ISGs such as 
STAT1 for reinforcement of effects of distinct cell-surface ligands while 
maintaining their individual specificities for inducing ISGs [34, 122, 174]. 
Although IFNG may enhance uterine receptivity to implantation in pigs, 
highly localized and abundant expression of IFNG, TNFA, IL1B and IL1R 
in the endometrium is associated with arrested conceptus development 
between Days 15 and 23 of pregnancy [165].

The roles of prostaglandins in the pig uterus during pregnancy remain 
to be clarified. However, there is evidence that inhibitors of prostaglandin 
synthesis inhibit establishment and maintenance of pregnancy in pigs [90]. 
There is also evidence that amounts of PGF and PGE2 in the uterine lumen 
are greater in pregnant than cyclic gilts [see 10] and that PGF from the 
uterus is taken up by the mesometrium and transferred to the uterus in 
arterial blood by a countercurrent system that exists in the broad ligament 
of the uterus [92] to be converted to an inactive metabolite [see 45]. 
There is evidence that PGE2 synthase, PGF synthase, carbonyl reductase/
prostaglandin 9-ketoreductase genes and PGE2 synthase:PGF synthase 
ratios are higher in CL of pregnant than cyclic gilts, but not between CL 
on ovaries ipsilateral and contralateral to the pregnant versus nonpregnant 
uterine horns [161]. Therefore, it was suggested that compounds from 
the conceptus are transported within the mesometrium to both ovaries to 
enhance CL maintenance and function.

It has also been proposed that an integral part of the maternal 
recognition of pregnancy signaling events are linked to the lipid signaling 
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system consisting of PGF2α, PGE2 and lysophosphatic acid (LPA) with 
high expression of PGE2 synthase in trophoblast and endometrium being 
responsible for down-regulation of PGF synthase and carbonyl reductase/
prostaglandin 9-ketoreductase in conceptuses in favor of PGE2 in support of 
uterine functions and CL maintenance for establishment and maintenance 
of pregnancy [179]. Expression of LPA3 is also higher during pregnancy 
and may be another key to establishment and maintenance of pregnancy in 
the pig. For example, LPA3 is known to be critical for embryo migration 
and spacing in mice [176] and this is very important for implantation and 
placentation in pigs.
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